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Amino acid-metal complexes have been the subject of in­
numerable studies,1 prompted by the roles of metals in biochem­
istry2 and amino acids in producing chiral catalysts.3 With very 
few exceptions,4 amino acid-metal complexes are coordinatively* 
saturated. For example, interaction of/V-unsubstituted amino 
acid salts with [Cp*IrCl(M-Cl)]21 leads to 18-electron complexes 
2, the stereogenic element of the amino acid producing mixtures 
modestly enriched in diastereomer 2a (from 50:50 up to 92:8).5 

Here we report that under modified conditions, amino acid 
derivatives 3 bearing electron-withdrawing groups Z on N afford 
air-stable 16-electron species 4, two members of which are 
characterized by X-ray diffraction. Furthermore, unlike ligand 
substitutions on 2 and related species, ligand addition reactions 
of chiral 4 proceed with high (>25:1) stereoselectivity. 

Typically, a mixture of 3,6 dimer I,7 and anhydrous K2CO3 
(molar ratio 1.00:0.50:2.0-3.0) was diluted with THF or CH3-
CN until the concentration of 3 was 0.01-0.04 M. Nitrogen was 
bubbled through the mixture for 5-10 min, and the orange (THF) 
or yellow (CH3CN) mixture was stirred for 4-36 h, until the 
color deepened to red. The residue remaining after rotary 
evaporation was diluted with CH2Cl2 and filtered through Celite, 
and the filtrate was concentrated to afford air-stable brick-red 
to burgundy-red 4 in >90% yields.8 Surprisingly, elemental 
analysis, IR, and NMR data9 pointed to absence of coordination 
by THF, CH3CN, or N2 in the isolated products. The 1H NMR 
data for glycine derivative 4a in CD2Cl2 were particularly 
revealing, a sharp two-proton singlet being seen at 5 3.20 ppm 
for the methylene group even at -90 0C, consistent with either 
an achiral structure or rapidly interconverting, enantiomeric, 
octahedral structures. X-ray crystallographic analysis on 4a10 

confirmed the former suggestion: the centroid of Cp* lies 0.022 
A away from the mean plane defined by the five atoms of the 
chelate ring, and no atom of the chelate lies more than 0.029 A 
away from that plane. Compared with 18-electron, 2,5 the Ir-N 
and Ir-O bonds are ca. 0.15 and 0.06 A shorter, respectively, 
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' (a) K2CO3, [Cp*IrCl(M-Cl)]2, THF or CH3CN, room temperature, 
4-36 h; (b) ligand, CDCl3 or C6D6, room temperature, S15 s. 

suggesting stabilization of the formally 16-electron metal by lone 
pairs on N and O;11 additional evidence for this insight follows. 

Enantiomeric purity of complexes 4f and 4d was determined 
to be at least 95%;12 derivatization9'13 gave mixtures of amides 
5a/5b and 6a/6b,14 respectively, in ratios of at least 20:1. 

The deep red color of solutions of 4 fades to yellow within 
seconds after addition of a phosphine ligand or CO,13 apparently 
a diagnostic color change for coordinative saturation in these 
systems. The resulting glycine-derived complexes 7a, 8a, and 9a 
display 1H NMR signals9 ascribable to two mutually coupled 
diastereotopic methylene protons, as expected for chiral species 
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Figure 1. Molecular structure of 4a, shown with 50% thermal ellipsoids. 
Hydrogen atoms other than those shown (assumed positions) are omitted 
for clarity. Selected bond distances (A) and angles (deg): I r(I)-N(I) 
= 1.981 (7), Ir( l ) - 0 ( 1) = 2.030(6), 0 ( 1 )-C(2) = 1.281 (11), C(2)-0(2) 
= 1.222(12), N(I)-S(I) = 1.629(7), N(I)-Ir(I)-O(I) - 80.3(3). 

Figure 2. Molecular structure of 4f, shown with 35% thermal ellipsoids. 
Hydrogen atoms other than those shown (assumed positions) are omitted 
for clarity. Selected bond distances (A) and angles (deg): I r(I)-N(I) 
= 1.977(9), Ir(I)-O(I) = 2.043(16), 0(1)-C(2) = 1.222(20), C(2)-
0(2) = 1.220(16), N(I)-S(I) = 1.646(9), N(I)- I r ( I ) -O(I) = 78.8(5). 

7-10. Comparison of eco = 1684 cnr1 for 4a and ceo = 1650 
cm-1 for 7a suggests reduced donation of electron density from 
O to Ir upon coordinative saturation. Further, whereas 4c (ceo 
= 1672 cnr1, br) shows a single set of resonances in its NMR 
spectrum at ambient temperatures, 7c (yco - 1645 cnr1, br) 
shows two sets of absorptions which coalesce at elevated 
temperatures (ca. 90 0C at 400 MHz) and whose ratio changes 
with solvent. These data point to the presence of rotameric forms 
of iV-Cbz-substituted complexes which interconvert rapidly on 
the NMR time scale at ambient temperatures in the case of 4 
because the unsaturated Ir competes successfully with the carbonyl 
group for electron density from N. Racemic 3g and 1 afford 
yellow (±)-12 (98% yield, two rotamers, configuration at S 
undetermined) directly, showing the possibility of side-chain 
coordination. 

Evaporation of a red solution of 4e in CH2Cl2 (ceo - 1642, 
1659 cm-1) leaves a yellow solid (in KBr, vCo = 1553,1570,1653 
cm-1) which redissolves rapidly to give a red solution in 
noncoordinating solvents, properties ascribed to interconversion 
of red 4e in solution and a yellow dimer in the solid.4b-16 

Significantly, addition of ligand PMe3, PMe2Ph, or CO to 
chiral 4 proceeds within seconds with high diastereoselectivity 

(>50:1 for 4d and 4f,17 >25:1 for 4b, yields >89%) to produce 
the isomer in which R and Cp* are syn,18 results ascribed to 
preferred attack of the ligand from the side of the metallacycle 
unhindered by R.'9 The possibility that an aryl substituted played 
a special role (entering into C-H agostic20,21 or ̂ -coordination22) 
was discounted by (a) normal NMR chemical shifts for aryl 
protons' and (b) examination of the structure of 4f:10 the Ir atom 
is only 0.19 A away from the mean plane of the C6H5 ring, but 
the distance between Ir and H(9pa), and nearest hydrogen of the 
C(H; ring, is ca. 3.6 A. As in 4a, the chelate ring is nearly planar 
(all five atoms are less than 0.022 A from the mean chelate plane), 
although some distortion is suggested by the distances of the Cp* 
centroid and S (0.099 and 0.378 A, respectively) from that plane. 
The syn arrangement of C6H5 and CH3C6H4 substituents (angle 
between mean planes, 19°) is an interesting contrast to the anti 

•arrangement proposed for structurally uncharacterized boron-
derived Lewis acids based on 3 and related species.23 

Complexes 4 are unique coordinatively unsaturated derivatives 
of amino acids which enter into highly diastereoselective, rapid 
complexation reactions directed by steric interactions with 
nonpolar side chains, findings which we feel have relevance to the 
design of both chiral transition metal3 and group 1323 catalysts. 
Studies of the addition of other ligands to 4, the regioselectivity 
of complex formation from peptides, and the use of other metal 
fragments are underway. 
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